博客
关于我
[源码解析] 并行分布式任务队列 Celery 之 EventDispatcher & Event 组件
阅读量:517 次
发布时间:2019-03-08

本文共 34048 字,大约阅读时间需要 113 分钟。

[源码解析] 并行分布式任务队列 Celery 之 EventDispatcher & Event 组件

目录

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量事件的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。

本文讲解 EventDispatcher 和 Event 组件 如何实现。

0x01 思路

EventDispatcher 和 Event 组件负责 Celery 内部事件(Event)的处理。

从字面上可以知道,EventDispatcher 组件的功能是事件(Event)分发,所以我们可以有如下已知信息:

  • 事件分发 势必有生产者,消费者,EventDispatcher 就是作为 事件生产者;
  • 涉及到生产消费,那么需要有一个 broker 存储中间事件;
  • 因为 Celery 底层依赖于 Kombu,而 Kombu 本身就有生产者,消费者概念,所以这里可以直接利用这两个概念;
  • Kombu 也提供了 Mailbox 的实现,它的作用就是通过 Mailbox 我们可以实现不同实例之间的事件发送和处理,具体可以是单播 和 广播;

所以我们可以大致推论:EventDispatcher 可以利用 kombu 的 producer, consumer 或者 Mailbox。

而 Events 是负责事件(Event)的接受,所以我们也可以推论:

  • Events 利用 Kombu 的消费者来处理 事件;
  • 具体如何处理事件,则会依据 Celery 的当前状态决定,这就涉及到了 State 功能;

我们下面就看看具体是怎么实现的。

为了让大家更好理解,我们先给出一个逻辑图如下:

0x02 定义

EventDispatcher 代码位于:celery\events\dispatcher.py

可以看到一个事件分发者需要拥有哪些成员变量以实现自己的功能:

  • connection (kombu.Connection) :就是用来和 Broker 交互的连接功能;
  • channel (kombu.Channel) : Channel 可以理解成共享一个Connection的多个轻量化连接。就是真正的连接。
    • Connection 是 AMQP 对 连接的封装;
    • Channel 是 AMQP 对 MQ 的操作的封装;
    • 具体以 "针对redis的轻量化连接" 来说,Channel 可以认为是 redis 操作和连接的封装。每个 Channel 都可以与 redis 建立一个连接,在此连接之上对 redis 进行操作,每个连接都有一个 socket,每个 socket 都有一个 file,从这个 file 可以进行 poll。
  • producer :事件生产者,使用 kombu producer 概念;
  • exchange :生产者发布事件时,先将事件发送到Exchange,通过Exchange与队列的绑定规则将事件发送到队列。
  • hostname : 用来标示自己,这样 EventDispatcher 的使用者可以知道并且使用;
  • groups :事件组功能;
  • _outbound_buffer :事件缓存;
  • clock :Lamport 逻辑时钟,在分布式系统中用于区分事件的发生顺序的时间机制;

具体类的定义是:

class EventDispatcher:    """Dispatches event messages.    """    DISABLED_TRANSPORTS = {'sql'}    app = None    def __init__(self, connection=None, hostname=None, enabled=True,                 channel=None, buffer_while_offline=True, app=None,                 serializer=None, groups=None, delivery_mode=1,                 buffer_group=None, buffer_limit=24, on_send_buffered=None):        self.app = app_or_default(app or self.app)        self.connection = connection        self.channel = channel        self.hostname = hostname or anon_nodename()        self.buffer_while_offline = buffer_while_offline        self.buffer_group = buffer_group or frozenset()        self.buffer_limit = buffer_limit        self.on_send_buffered = on_send_buffered        self._group_buffer = defaultdict(list)        self.mutex = threading.Lock()        self.producer = None        self._outbound_buffer = deque()        self.serializer = serializer or self.app.conf.event_serializer        self.on_enabled = set()        self.on_disabled = set()        self.groups = set(groups or [])        self.tzoffset = [-time.timezone, -time.altzone]        self.clock = self.app.clock        self.delivery_mode = delivery_mode        if not connection and channel:            self.connection = channel.connection.client        self.enabled = enabled        conninfo = self.connection or self.app.connection_for_write()        self.exchange = get_exchange(conninfo,                                     name=self.app.conf.event_exchange)        if conninfo.transport.driver_type in self.DISABLED_TRANSPORTS:            self.enabled = False        if self.enabled:            self.enable()        self.headers = {'hostname': self.hostname}        self.pid = os.getpid()

我们先给出此时变量内容,大家可以先有所了解。

self = {EventDispatcher} 
DISABLED_TRANSPORTS = {set: 1} {'sql'} app = {Celery}
buffer_group = {frozenset: 0} frozenset() buffer_limit = {int} 24 buffer_while_offline = {bool} True channel = {NoneType} None clock = {LamportClock} 0 connection = {Connection}
delivery_mode = {int} 1 enabled = {bool} True exchange = {Exchange} Exchange celeryev(fanout) groups = {set: 1} {'worker'} headers = {dict: 1} {'hostname': 'celery@DESKTOP-0GO3RPO'} hostname = {str} 'celery@DESKTOP-0GO3RPO' mutex = {lock}
on_disabled = {set: 1} {
>} on_enabled = {set: 1} {
>} on_send_buffered = {NoneType} None pid = {int} 26144 producer = {Producer}
> publisher = {Producer}
> serializer = {str} 'json' tzoffset = {list: 2} [28800, 32400] _group_buffer = {defaultdict: 0} defaultdict(
, {}) _outbound_buffer = {deque: 0} deque([])

0x03 Producer

我们发现,EventDispatcher 确实使用了 Kombu 的 Producer,当然 Celery 这里使用 ampq 对 Kombu 做了封装。所以我们重点就需要看如何配置 Producer。

具体需要配置的是:

  • Connection,需要以此来知道联系哪一个 Redis;

  • Exchange,需要知道读取哪一个 Queue;

下面我们就逐一分析。

3.1 Connection

由代码可以看到,Connection 是直接使用 Celery 的 connection_for_write

conninfo = self.connection or self.app.connection_for_write()

此时变量为:

connection = {Connection} 
conninfo = {Connection}

3.2 Exchange

Exchange 概念如下:

  • Exchange:交换机 或者 路由。事件发送者将事件发至Exchange,Exchange负责将事件分发至队列;
  • Queue:事件队列,存储着即将被应用消费掉的事件,Exchange负责将事件分发Queue,消费者从Queue接收事件;

具体来说,Exchange 用于路由事件(事件发给exchange,exchange发给对应的queue)。

交换机通过匹配事件的 routing_key 和 binding_key来转发事件,binding_key 是consumer 声明队列时与交换机的绑定关系。

路由就是比较routing-key(这个 message 提供)和 binding-key(这个queue 注册到 exchange 的时候提供)。

使用时,需要指定exchange的名称和类型(direct,topic和fanout)。可以发现,和RabbitMQ中的exchange概念是一样的。事件发送给exchages。交换机可以被命名,可以通过路由算法进行配置。

具体回到代码上。

def get_exchange(conn, name=EVENT_EXCHANGE_NAME):    """Get exchange used for sending events.    Arguments:        conn (kombu.Connection): Connection used for sending/receiving events.        name (str): Name of the exchange. Default is ``celeryev``.    Note:        The event type changes if Redis is used as the transport        (from topic -> fanout).    """    ex = copy(event_exchange)    if conn.transport.driver_type == 'redis':        # quick hack for Issue #436        ex.type = 'fanout'    if name != ex.name:        ex.name = name    return ex

此时变量为:

EVENT_EXCHANGE_NAME = 'celeryev'    self.exchange = {Exchange} Exchange celeryev(fanout)

所以我们知道,这里默认的 Exchange 就是一个 celeryev(fanout) 类型。

3.3 建立

于是,我们具体就看到了 Producer。

def enable(self):        self.producer = Producer(self.channel or self.connection,                                 exchange=self.exchange,                                 serializer=self.serializer,                                 auto_declare=False)        self.enabled = True        for callback in self.on_enabled:            callback()

0x04 分发事件

既然建立了 Producer,我们就可以进行发送。

4.1 Send 发送

发送事件就是直接是否需要成组发送。

  • 如果需要分组发送,就内部有一个缓存,然后成组发送;
  • 否则就直接调用 Producer publish API 发送。

关于如何区分分组是依靠如下代码:

groups, group = self.groups, group_from(type)

相关变量为:

group = {str} 'worker'groups = {set: 1} {'worker'}type = {str} 'worker-online'

发送具体代码如下:

def send(self, type, blind=False, utcoffset=utcoffset, retry=False,             retry_policy=None, Event=Event, **fields):        """Send event.        """        if self.enabled:            groups, group = self.groups, group_from(type)            if groups and group not in groups:                return            if group in self.buffer_group:                clock = self.clock.forward()                event = Event(type, hostname=self.hostname,                              utcoffset=utcoffset(),                              pid=self.pid, clock=clock, **fields)                buf = self._group_buffer[group]                buf.append(event)                if len(buf) >= self.buffer_limit:                    self.flush()                elif self.on_send_buffered:                    self.on_send_buffered()            else:                return self.publish(type, fields, self.producer, blind=blind,                                    Event=Event, retry=retry,                                    retry_policy=retry_policy)

4.2 publish 与 broker 交互

send 会调用到这里。

这里构建了 routing_key :

routing_key=type.replace('-', '.')

于是得倒了routing_key 为 'worker.online'。

也构建了 Event;

event = {dict: 13}  'hostname' = {str} 'celery@DESKTOP-0GO3RPO' 'utcoffset' = {int} -8 'pid' = {int} 24320 'clock' = {int} 1 'freq' = {float} 2.0 'active' = {int} 0 'processed' = {int} 0 'loadavg' = {tuple: 3} (0.0, 0.0, 0.0) 'sw_ident' = {str} 'py-celery' 'sw_ver' = {str} '5.0.5' 'sw_sys' = {str} 'Windows' 'timestamp' = {float} 1611464767.3456059 'type' = {str} 'worker-online' __len__ = {int} 13

publish 代码如下:

def publish(self, type, fields, producer,                blind=False, Event=Event, **kwargs):        """Publish event using custom :class:`~kombu.Producer`.        Arguments:            type (str): Event type name, with group separated by dash (`-`).                fields: Dictionary of event fields, must be json serializable.            producer (kombu.Producer): Producer instance to use:                only the ``publish`` method will be called.            retry (bool): Retry in the event of connection failure.            retry_policy (Mapping): Map of custom retry policy options.                See :meth:`~kombu.Connection.ensure`.            blind (bool): Don't set logical clock value (also don't forward                the internal logical clock).            Event (Callable): Event type used to create event.                Defaults to :func:`Event`.            utcoffset (Callable): Function returning the current                utc offset in hours.        """        clock = None if blind else self.clock.forward()        event = Event(type, hostname=self.hostname, utcoffset=utcoffset(),                      pid=self.pid, clock=clock, **fields)        with self.mutex:            return self._publish(event, producer,                                 routing_key=type.replace('-', '.'), **kwargs)    def _publish(self, event, producer, routing_key, retry=False,                 retry_policy=None, utcoffset=utcoffset):        exchange = self.exchange        try:            producer.publish(                event,                routing_key=routing_key,                exchange=exchange.name,                retry=retry,                retry_policy=retry_policy,                declare=[exchange],                serializer=self.serializer,                headers=self.headers,                delivery_mode=self.delivery_mode,            )        except Exception as exc:  # pylint: disable=broad-except            if not self.buffer_while_offline:                raise            self._outbound_buffer.append((event, routing_key, exc))

因为是 pubsub,所以此时在 redis 之中看不到事件内容。

此时redis内容如下(看不到事件):

redis-cli.exe -p 6379127.0.0.1:6379> keys *1) "_kombu.binding.celery.pidbox"2) "_kombu.binding.celery"3) "_kombu.binding.celeryev"127.0.0.1:6379> smembers _kombu.binding.celeryev 1) "worker.#\x06\x16\x06\x16celeryev.64089900-d397-4564-b343-742664c1b214"127.0.0.1:6379> smembers _kombu.binding.celery1) "celery\x06\x16\x06\x16celery"127.0.0.1:6379> smembers _kombu.binding.celery.pidbox1) "\x06\x16\x06\x16celery@DESKTOP-0GO3RPO.celery.pidbox"127.0.0.1:6379>

现在,EventDispatcher 组件已经把事件发送出去。

这个事件将如何处理?我们需要看看 Events 组件

0x05 Events 组件

5.1 Event 有什么用

前面说了,Celery 在 Task/Worker 的状态发生变化的时候就会发出 Event,所以,一个很明显的应用就是监控 Event 的状态,例如 Celery 大家所熟知的基于 WebUI 的管理工具 flower 就用到了 Event,但是,这也是一个比较明显的应用,除此之外,我们还可以利用 Event 来给 Task 做快照,甚至实时对 Task 的状态转变做出响应,例如任务失败之后触发报警,任务成功之后执行被依赖的任务等等,总结一下,其实就是:

  • 对 Task 的状态做快照;
  • 对 Task 的状态做实时处理;
  • 监控 Celery(Worker/Task) 的执行状态;

5.2 调试

Celery Events 可以用来开启快照相机,或者将事件dump到标准输出。

比如:

celery -A proj events -c myapp.DumpCam --frequency=2.0celery -A proj events --camera=
--frequency=1.0celery -A proj events --dump

为了调试,我们需要采用如下方式:

app.start(argv=['events'])

具体命令实现是:

def events(ctx, dump, camera, detach, frequency, maxrate, loglevel, **kwargs):    """Event-stream utilities."""    app = ctx.obj.app    if dump:        return _run_evdump(app)    if camera:        return _run_evcam(camera, app=app, freq=frequency, maxrate=maxrate,                          loglevel=loglevel,                          detach=detach,                          **kwargs)    return _run_evtop(app)

5.3 入口

Events入口为:

def _run_evtop(app):    try:        from celery.events.cursesmon import evtop        _set_process_status('top')        return evtop(app=app)

接着跟踪看看。

def evtop(app=None):  # pragma: no cover    """Start curses monitor."""    app = app_or_default(app)    state = app.events.State()    display = CursesMonitor(state, app)    display.init_screen()    refresher = DisplayThread(display)    refresher.start()       capture_events(app, state, display)

5.4 事件循环

我们来到了事件循环。

这里建立了一个 app.events.Receiver。

注意,这里给 Receiver 传入的 handlers={'*': state.event},是后续处理事件时候的处理函数。

def capture_events(app, state, display):  # pragma: no cover    while 1:        with app.connection_for_read() as conn:            try:                conn.ensure_connection(on_connection_error,                                       app.conf.broker_connection_max_retries)                                recv = app.events.Receiver(conn, handlers={'*': state.event})                                display.resetscreen()                display.init_screen()                                recv.capture()                            except conn.connection_errors + conn.channel_errors as exc:                print(f'Connection lost: {exc!r}', file=sys.stderr)

结果发现是循环调用 recv.capture()。

具体如下:

Events   +--------------------+   |      loop          |   |                    |   |                    |   |                    |   |                    |   |                    v   |   |        EventReceiver.capture()   |   |                    +   |                    |   |                    |   |                    |   |                    |   |                    |   |                    |   +--------------------+

5.5 EventReceiver

EventReceiver 就是用来接收Event,并且处理的。而且需要留意,EventReceiver 是继承 ConsumerMixin。

class EventReceiver(ConsumerMixin):    """Capture events.    Arguments:        connection (kombu.Connection): Connection to the broker.        handlers (Mapping[Callable]): Event handlers.            This is  a map of event type names and their handlers.            The special handler `"*"` captures all events that don't have a            handler.    """

其代码如下:

def capture(self, limit=None, timeout=None, wakeup=True):        """Open up a consumer capturing events.        This has to run in the main process, and it will never stop        unless :attr:`EventDispatcher.should_stop` is set to True, or        forced via :exc:`KeyboardInterrupt` or :exc:`SystemExit`.        """        for _ in self.consume(limit=limit, timeout=timeout, wakeup=wakeup):            pass

对应变量如下:

self.consume = {method} 
>self = {EventReceiver}

可以看到利用了 ConsumerMixin 来处理事件。其实从文章开始时候我们就知道,既然有 kombu . producer ,就必然有 kombu . consumer。

这里其实是有多个 EventReceiver 绑定了这个 Connection,然后 ConsumerMixin 帮助协调这些 Receiver,每个 Receiver 都可以收到这些 Event,但是能不能处理就看他们的 routing_key 设置得好不好了

所以如下:

Events   +--------------------+   |      loop          |   |                    |   |                    |   |                    |   |                    |   |                    v   |   |     EventReceiver(ConsumerMixin).capture()   |   |                    +   |                    |   |                    |   |                    |   |                    |   |                    |   |                    |   +--------------------+

5.6 ConsumerMixin

ConsumerMixin 是 Kombu 提供的 组合模式类,可以用来方便的实现 Consumer Programs。

class ConsumerMixin:    """Convenience mixin for implementing consumer programs.    It can be used outside of threads, with threads, or greenthreads    (eventlet/gevent) too.    The basic class would need a :attr:`connection` attribute    which must be a :class:`~kombu.Connection` instance,    and define a :meth:`get_consumers` method that returns a list    of :class:`kombu.Consumer` instances to use.    Supporting multiple consumers is important so that multiple    channels can be used for different QoS requirements.	"""

文件在 :kombu\mixins.py

def consume(self, limit=None, timeout=None, safety_interval=1, **kwargs):        elapsed = 0        with self.consumer_context(**kwargs) as (conn, channel, consumers):            for i in limit and range(limit) or count():                if self.should_stop:                    break                self.on_iteration()                try:                    conn.drain_events(timeout=safety_interval)                except socket.timeout:                    conn.heartbeat_check()                    elapsed += safety_interval                    if timeout and elapsed >= timeout:                        raise                except OSError:                    if not self.should_stop:                        raise                else:                    yield                    elapsed = 0

5.6.1 Consumer

ConsumerMixin 内部建立 Consumer如下:

@contextmanager    def Consumer(self):        with self.establish_connection() as conn:            self.on_connection_revived()            channel = conn.default_channel            cls = partial(Consumer, channel,                          on_decode_error=self.on_decode_error)            with self._consume_from(*self.get_consumers(cls, channel)) as c:                yield conn, channel, c            self.on_consume_end(conn, channel)

在 具体建立时候,把self._receive设置为 Consumer callback。

def get_consumers(self, Consumer, channel):        return [Consumer(queues=[self.queue],                         callbacks=[self._receive], no_ack=True,                         accept=self.accept)]

堆栈为:

get_consumers, receiver.py:72Consumer, mixins.py:230__enter__, contextlib.py:112consumer_context, mixins.py:181__enter__, contextlib.py:112consume, mixins.py:188capture, receiver.py:91evdump, dumper.py:95_run_evdump, events.py:21events, events.py:87caller, base.py:132new_func, decorators.py:21invoke, core.py:610invoke, core.py:1066invoke, core.py:1259main, core.py:782start, base.py:358
, myEvent.py:18

此时变量为:

self.consume = {method} 
>self.queue = {Queue}
-> #>self._receive = {method}
>Consumer = {partial} functools.partial(
,
, on_decode_error=
>)channel = {Channel}
self = {EventReceiver}

此时为:

Events+-----------------------------------------+| EventReceiver(ConsumerMixin)            ||                                         ||                                         ||                                         |  consume|                                         |               +------------------+|                            capture  +-----------------> | Consumer         ||                                         |               |                  ||                                         |               |                  ||                                         |               |                  ||                           _receive  <----------------------+ callbacks     ||                                         |               |                  ||                                         |               |                  ||                                         |               +------------------++-----------------------------------------+

5.7 接收

当有事件时候,就调用 _receive 进行接收。

def _receive(self, body, message, list=list, isinstance=isinstance):        if isinstance(body, list):  # celery 4.0+: List of events            process, from_message = self.process, self.event_from_message            [process(*from_message(event)) for event in body]        else:            self.process(*self.event_from_message(body))

5.8 处理

接受之后,就可以进行处理。

def process(self, type, event):        """Process event by dispatching to configured handler."""        handler = self.handlers.get(type) or self.handlers.get('*')        handler and handler(event)

此时如下:

这里的 Receiver . handlers 是建立 Receiver时候 传入的 handlers={'*': state.event},是后续处理事件时候的处理函数。

Events+-----------------------------------------+| EventReceiver(ConsumerMixin)            ||                                         ||                                         ||                                         |  consume|                                         |               +------------------+|                            capture  +-----------------> | Consumer         ||                                         |               |                  ||                                         |               |                  ||                                         |               |                  ||                           _receive  <----------------------+ callbacks     ||                                         |               |                  ||                                         |               |                  ||                                         |               +------------------+|                                         ||                            handlers +------------+|                                         |        |      +------------------++-----------------------------------------+        |      |state             |                                                   |      |                  |                                                   |      |                  |                                                   +-------->event           |                                                          |                  |                                                          |                  |                                                          +------------------+

5.9 state处理函数

具体如下:

@cached_property    def _event(self):        return self._create_dispatcher()

概括起来是这样的:

  1. 先找 group 的 handler,有的话就用这个了,否则看下面;这个默认是没东西的,所以可以先pass
  2. 如果是 worker 的 Event,就执行 worker 对应的处理
  3. 如果是 task 的 Event,就执行 task 的对应处理
def _create_dispatcher(self):        # noqa: C901        # pylint: disable=too-many-statements        # This code is highly optimized, but not for reusability.        get_handler = self.handlers.__getitem__        event_callback = self.event_callback        wfields = itemgetter('hostname', 'timestamp', 'local_received')        tfields = itemgetter('uuid', 'hostname', 'timestamp',                             'local_received', 'clock')        taskheap = self._taskheap        th_append = taskheap.append        th_pop = taskheap.pop        # Removing events from task heap is an O(n) operation,        # so easier to just account for the common number of events        # for each task (PENDING->RECEIVED->STARTED->final)        #: an O(n) operation        max_events_in_heap = self.max_tasks_in_memory * self.heap_multiplier        add_type = self._seen_types.add        on_node_join, on_node_leave = self.on_node_join, self.on_node_leave        tasks, Task = self.tasks, self.Task        workers, Worker = self.workers, self.Worker        # avoid updating LRU entry at getitem        get_worker, get_task = workers.data.__getitem__, tasks.data.__getitem__        get_task_by_type_set = self.tasks_by_type.__getitem__        get_task_by_worker_set = self.tasks_by_worker.__getitem__        def _event(event,                   timetuple=timetuple, KeyError=KeyError,                   insort=bisect.insort, created=True):            self.event_count += 1            if event_callback:                event_callback(self, event)            group, _, subject = event['type'].partition('-')            try:                handler = get_handler(group)            except KeyError:                pass            else:                return handler(subject, event), subject            if group == 'worker':                try:                    hostname, timestamp, local_received = wfields(event)                except KeyError:                    pass                else:                    is_offline = subject == 'offline'                    try:                        worker, created = get_worker(hostname), False                    except KeyError:                        if is_offline:                            worker, created = Worker(hostname), False                        else:                            worker = workers[hostname] = Worker(hostname)                    worker.event(subject, timestamp, local_received, event)                    if on_node_join and (created or subject == 'online'):                        on_node_join(worker)                    if on_node_leave and is_offline:                        on_node_leave(worker)                        workers.pop(hostname, None)                    return (worker, created), subject            elif group == 'task':                (uuid, hostname, timestamp,                 local_received, clock) = tfields(event)                # task-sent event is sent by client, not worker                is_client_event = subject == 'sent'                try:                    task, task_created = get_task(uuid), False                except KeyError:                    task = tasks[uuid] = Task(uuid, cluster_state=self)                    task_created = True                if is_client_event:                    task.client = hostname                else:                    try:                        worker = get_worker(hostname)                    except KeyError:                        worker = workers[hostname] = Worker(hostname)                    task.worker = worker                    if worker is not None and local_received:                        worker.event(None, local_received, timestamp)                origin = hostname if is_client_event else worker.id                # remove oldest event if exceeding the limit.                heaps = len(taskheap)                if heaps + 1 > max_events_in_heap:                    th_pop(0)                # most events will be dated later than the previous.                timetup = timetuple(clock, timestamp, origin, ref(task))                if heaps and timetup > taskheap[-1]:                    th_append(timetup)                else:                    insort(taskheap, timetup)                if subject == 'received':                    self.task_count += 1                task.event(subject, timestamp, local_received, event)                task_name = task.name                if task_name is not None:                    add_type(task_name)                    if task_created:  # add to tasks_by_type index                        get_task_by_type_set(task_name).add(task)                        get_task_by_worker_set(hostname).add(task)                if task.parent_id:                    try:                        parent_task = self.tasks[task.parent_id]                    except KeyError:                        self._add_pending_task_child(task)                    else:                        parent_task.children.add(task)                try:                    _children = self._tasks_to_resolve.pop(uuid)                except KeyError:                    pass                else:                    task.children.update(_children)                return (task, task_created), subject        return _event

具体如下:

Events+-----------------------------+| EventReceiver(ConsumerMixin ||                             ||                             |               +------------------+|                             |  consume      | Consumer         ||                             |               |                  ||                capture  +-----------------> |                  ||                             |               |                  ||                             |               |                  ||                             |               |                  ||               _receive  <----------------------+ callbacks     ||                             |               |                  ||                             |               |                  ||                             |               +------------------+|                             ||                handlers +------------+|                             |        |      +------------------------++-----------------------------+        |      |state                   |                                       |      |                        |                                       |      |                        |                                       +---------> event +---+         |                                              |              |         |                                              |              |         |                                              |              v         |                                              |     _create_dispatcher |                                              |              +         |                                              |              |         |                                              |              |         |                                              |              |         |                                              +------------------------+                                                             |                                                             |                                                    +--------+------+                                group == 'worker'   |               | group == 'task'                                                    |               |                                                    v               v                                          worker.event          task.event

最终,逻辑如下:

Producer Scope   +         Broker      +   Consumer Scope                                      |                     |+-----------------------------+       |     Redis pubsub    |     Events| EventDispatcher             |       |                     ||                             |       |                     |     +-----------------------------+|                             |       |                     |     | EventReceiver(ConsumerMixin ||                             |       |                     |     |                             ||        connection           |       |                     |     |                             |               +------------------+|                             |       |                     |     |                             |  consume      | Consumer         ||        channel              |       |                     |     |                             |               |                  ||                             |       |                     |     |                capture  +-----------------> |                  ||        producer  +----------------------->  Event +-----------> |                             |               |                  ||                             |       |                     |     |                             |               |                  ||        exchange             |       |                     |     |                             |               |                  ||                             |       |                     |     |               _receive  <----------------------+ callbacks     ||        hostname             |       |                     |     |                             |               |                  ||                             |       |                     |     |                             |               |                  ||        groups               |       |                     |     |                             |               +------------------+|                             |       |                     |     |                             ||        _outbound_buffer     |       |                     |     |                handlers +------------+|                             |       |                     |     |                             |        |      +------------------------+|        clock                |       |                     |     +-----------------------------+        |      |state                   ||                             |       |                     |                                            |      |                        |+-----------------------------+       |                     |                                            |      |                        |                                      |                     |                                            +---------> event +---+         |                                      |                     |                                                   |              |         |                                      |                     |                                                   |              |         |                                      |                     |                                                   |              v         |                                      |                     |                                                   |     _create_dispatcher |                                      |                     |                                                   |              +         |                                      |                     |                                                   |              |         |                                      |                     |                                                   |              |         |                                      |                     |                                                   |              |         |                                      |                     |                                                   +------------------------+                                      |                     |                                                                  |                                      |                     |                                                                  |                                      |                     |                                                         +--------+------+                                      |                     |                                     group == 'worker'   |               | group == 'task'                                      |                     |                                                         |               |                                      |                     |                                                         v               v                                      +                     +                                               worker.event          task.event

手机如下:

至此,Celery 内部的事件发送,接受处理 的两个组件就讲解完毕。

0xEE 个人信息

★★★★★★关于生活和技术的思考★★★★★★

微信公众账号:罗西的思考

如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,可以扫描下面二维码(或者长按识别二维码)关注个人公众号)。

0xFF 参考

转载地址:http://xvgnz.baihongyu.com/

你可能感兴趣的文章
Swagger2 设置全局token
查看>>
Spring Cloud Gateway 过滤器中直接返回错误结果信息
查看>>
idea Error:java: 错误: 不支持发行版本 5
查看>>
java.io.IOException:Stream closed
查看>>
zookeeper入门
查看>>
CPLEX Python入门--从简单的CplexPythonAPI详解到简单的DoCplex建模
查看>>
JS-button标签说明
查看>>
JS18-DOM操作之标签的样式
查看>>
JS-限定符号( ^ 和 $ 与 * + ? {n} {n,} {n,m} )
查看>>
demo---购物车的多条记录保存(cookie)
查看>>
demo-淘宝输入框搜索
查看>>
数据链路访问
查看>>
scikit-video读写视频
查看>>
参考图像
查看>>
没有为此解决方案配置选中要生成的项目
查看>>
The system is: Windows - 10.0.14393 - AMD64
查看>>
6.3工作日志
查看>>
小米手机解锁BL一直显示未解决(终极方案)
查看>>
*.json: [“usingComponents“][“van-button“] 未找到
查看>>
Spring整合Mybatis遇到的错误一
查看>>